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Short Papers

Whispering-Gallery Modes in Shielded Hemispherical  into account. The frequencies ar@d factors of the lower order
Dielectric Resonators modes of the dielectric sphere with the ideally conducting spherical
shield were considered in [11]. In [3], the resonant frequencies
Zoya E. Eremenko, Yury F. Filipov, Sergey N. Kharkovsky, and @ factors of WG modes in an open hemispherical dielectric
Vladimir V. Kutuzov, and Alexander E. Kogut resonator (OHDR) were given.
In this paper, the results of the investigations of WG modes in a

] ) ] o shielded hemispherical dielectric resonator (SHDR) are presented.
Abstract—The results of the numerical and experimental investigations

of whispering-gallery (WG) modes in shielded hemispherical dielectric

resonators are presented in this paper. It is shown that theQ factor of Il. THEORETICAL FOUNDATION

WG modes in the shielded resonator can be ten times much higher than . o . .
the Q factor of the similar open hemispherical dielectric-resonator modes. L€t us consider the layered resonator consisting of a dielectric

Shielding the resonator can decrease the dimensions of both the dielectric hemisphere (radius , dielectric permittivityz; ), hemispherical metal

hemisphere and resonator as a whole, saving the hig@ factor of WG . . . e .
modes. The usage of a cylindrical shield and local flat reflectors in the shield O_f the internal radius, | exter.nal raqlug_f” and an _'d?a”y
experiment provides the investigation of the high@ factor of WG modes  conducting flat ground plate. Dielectric media with permittivityfills

in the resonator. a gap between the shield and dielectric hemisphere. Each dielectric
Index Terms—Cylindrical shield, field distribution, @ factor, shielded of the resonator is isotropic, homogeneous, and each has a complex
hemispherical dielectric resonator (SHDR), whispering-gallery (WG) (ielectric permittivity. The shield has; = io/(zow,), Wherec is

modes. o . e .
the metal conductivityz is the permittivity of a vacuum, and,, is
the resonant frequency efoscillation.p is the triple index., m, I,
I. INTRODUCTION wheren, m, andl are the variation numbers along the polar, azimuth,

Dielectric resonators (DRs) with whispering-gallery (WG) mode8nd radial coordinates, respectively. We suppose that the penetration
have been under investigation for over 40 years, and they have bédepth of a field is small in comparison with the metal shield thickness
especially intensively studied lately [1]-[3]. The reason is the certarecause of the high metal conductivity. Independent T (= 0)

advantages of the DRs with WG modes, e.g., the liigfactor and and TE E, = 0) modes exist in such a structure.

capability of working in a wide frequency range from the microwave The solutions of the Maxwell equations satisfying both the condi-
to visible radiation. For the application of a DR in devices, such q%, of finiteness at = 0 and the boundary conditions on the different
a microwave high stgble signal source, frequency stano_lard, etc'mgdia interfaces (the continuity conditions of tangential-field compo-
is necessary to provide low sensitivity of the DR to environmental .
perturbations. One of the solutions of this problem is to shield lentsEo, E., H"’,H‘p’ aan" = E, = 0 atf = n/2) are obtained
WG-mode DR. The investigations of the shielded cylindrical DS @ Set of spherical functions

[4]1-[6] are well known. The design of these resonators requires the )

accurate computation of the resonant frequency @nidctor of the Us = ZFSPRSP(’“)P'T(“OSH) exp [’('”w - wt)]' @)
operating mode. However, real definite cylindrical structures are P
described by only approximate methods [6]. From this point-of-view, yere . s the mode’s amplitude defined from the conditions
spherical structures are very attractive. WG modes in a Spheri%‘?lexcitation s is the indexE for TM modes andf for TE modes
resonator are higher order modes, of which fields are localized negy, L . . '
the resonator boundary between an external and internal caustlc’s.(cf“ﬁ) 1S thg assomatgd Le.ger.1dre. function. The funciit (r)
They are separated into two independent families of TM and TE W&gscribes a radial-mode field distribution

modes, called WGE and WGH modes, respectively. The spherical

resonators with WG modes can be described by means of rigorous

methods and can be used in millimeter-wave and optical techniques, Asjn (\/akzﬂ‘)» 0<r<n

e.g., for frequency stabilization of semiconductor lasers [7] and : )

material studies [8]. On the other hand, there is the problem oftsr(r) = § Jn (\/Ekp"') - DS”"(\/SkPT)v ST ST

a dense spectrum in spherical resonators with WG modes. I " <, <
Numerical investigation of resonant frequencies of the lower order s ltn (V 3 P")‘ 2T ST
modes in the dielectric sphere were carried out in [9] in a case 2

without losses, and also in [10] in a case when losses were takipere

wr
Jnlx) = 7/ 7*777-&-1/2(1')
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andk, = w,/c, ¢ is the light velocity in vacuum
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Tij =ikt Fig. 1. Schematic view of the shielded resonator design.
Jig =Jn (177)
hi; =h, (x:;) reflector (2). The reflector with a coupling slot is able to move along
. vf,(x) the flat hemisphere surface.
fola) =fomi(@) = == In [3], it was shown that the slot in the OHDR excited the belt type

of WG modes. These types of modes exist in the SHDR. The fields
of these modes are localized in the narrow area as hemispherical belts
The characteristic equations for the modes are given as follows: between reflectors 1 and 2 (as shown in Fig. 1). The particular shielded
resonator does not support higher order radial and azimuth WG modes
(asjilhm - jllh‘,zl) {ﬁshﬁg (jzz,m - J"zﬂm) of the dielectric hemisphere and any modes of the cylinder because
of their high radiation losses on the local flat reflectors. The hollow
metal cylinder 4 (as shown in Fig. 1), opened with side ends, provides
shielding belt type of WG modes and does not support other types of
3) SHDR modes.
Measurement of thé) factor of modes was carried out using an
Atsmall values of the polar index the lower order modes inside theiMPedance technique [12]. Measurement of the distribution of the res-
hemisphere possess the volume character. At the large values of a pfigfor-mode fields was carried out by a modified perturbation method.
index, the higher order modes, i.e., the WGE and WGH modes, tratsi @ small dlsturl_)mg body, the slot in reflector 1 (as sh_own |n.|_:|g. _1)
along the hemisphere boundary and have the field oscillating betwd¥as Used. The displacement of the reflector changed its position in a

an external and inner caustics. mode field. . . I . .

The energy density distributidit () for thepth resonant mode can The experimental investigations were carried out in the frequency
be obtained by averaging energy density distributifr, 6, ) onan- fange of 27_—37 GHz. The dielectric hemlspheres were made of Tefl_on
gular coordinates. We then have the following expression: and the shields were made of alumlnun41. The parameters_of materials
ares; = 2.08,z0 =1,tané = 1.8 x 10, ando = 3.5 x 10" S/m.
R2.(x) + (k2 The coupling slot wi_th dirr_lensions _7.2 manl mm was located in

ns\/ P reflector 2, and the disturbing slot with dimensions 7.2 mi®.05 mm

, 2 was located in reflector 1.
() + rc]} @

IV. RESULTS AND DISCUSSION

Nij =nn(@i;)-

+ D32 (jm Moo — JooT2n )}

= —jn (Jashzglz,;z - hgzhgg).

VV(’I‘) _ annf]s('r) {71(71‘—1— 1)

272 72

wherepr(r) = co=(r); prr(r) = po, pto is the permeability of a
vacuum.

The functionR,, s () is obtained by (2), in whicly is equal to,/e1 &,
at0 < r < 7y, Je2kp atr < r < 1o y/E3ky atre < v <1y,
Gnm = 2n(n+ )(n+m)!/(2n + 1)(n — m)!.

The investigation of the SHDR with different dimensions shows that,
by increasing the gap, the resonance frequency of the WGH modes
decreases and the resonance frequency of the WGE modes increases,
while the unloaded) factor of both modes gradually increases, ex-
ceeding a level of tan )™ = 5.6 x 10°. The resonant frequency
of both WGH and WGE modes then becomes practically invariable
and equal to the resonant frequency of the corresponding modes of the

A full spectrum of the SHDR includes higher order radial and adHDR [3], and there are the maximum values of €héactor of both
imuth WG modes and other mode types of the structure. The demsedes. These maximum values@ftiepend on the resonant frequency
spectrum complicates the experimental study and application of thiethe magnitude of the polar index
SHDR with WG modes. For overcoming this problem, we propose The dependency of the unload€dfactor of the SHDR and OHDR
using a particular SHDR in the experiment, as shown in Fig. 1. In thisodes for the dielectric hemisphere with= 39 mm onr is shown in
resonator design, local flat reflectors (1 and 2) are used, on whichrig. 2. The metal hollow cylinder of radius 42 mm and length 120 mm
dielectric hemisphere (3) and a metal hollow cylinder (4) are placedere used. With the decreaserafthe Q factor of the SHDR mode
The modes in such a partial shielded structure are excited by the opereases, th& factor of the OHDR mode drops with the decrease of
end of the hollow metal waveguide (5) through a coupling slot in thibe indexn because of radiation losses. We can see from Fig. 2 that at

lll. B ACKGROUND OF THEEXPERIMENT
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8 R The investigation of the dependency of fefactor on dimensions
s of the open and shielded resonators shows that the highest level of the
3 I A e o] () factor (approximately 5.& 10°*) of the OHDR withr; = 39 mm
can be obtained in the SHDR with = 19 mm andr, = 24 mm for
< 4 1 the WGE mode ab = 20 andm = [ = 1. The total radius of the
A SHDR in this case is equal to 25 mm for the thickness of the shield of
0 24 ] 1 mm (it is quite enough for practical purposes). Thus, shielding the
, DR can decrease the dimensions of both the dielectric hemisphere and
04 o7 1 resonator as a whole, saving the highfactor of the WG mode.
5 10 15 20 25 30 35 40 45
n V. CONCLUSION

Fig. 2. Q factors of WGE,, ;1 modes versus the polar index Curve 1 SHDRs with the WG modes have been considered in this paper. It
corresponds to the SHDR. Curve 2 corresponds to the OHPahdm show  has been shown that at particular parameters of the SHDR), thetor

the experimental results, respectively. The dashed line shows the valueopftS WG modes is ten times more than tBeactor of similar modes

tan é) L. . . . . . .

(tan ) in the OHDR. It is physically explained by wave interference in a gap

1,0 ‘ between the dielectric and metal and, as inquest, the localization of the
field of modes in the dielectric and near it in free space of the gap. The
@ factor of these SHDR modes increases with the decrease of the polar
¢ index.
o A It has also been shown that a shielding DR can decrease the dimen-
2 0.51 sions of both the dielectric hemisphere and resonator as a whole, saving
= / the high€) factor of WG modes. We suppose that the record signifi-
. cance of the&) factor of WG modes can be reached for the SHDR with
4 high-quality dielectrics at low temperatures and the optimal value of an
-
0,0 2 , L air-filled gap.
32 36 40 44
r, mm
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